Skip to main content

What's driving morphological trait evolution?

My personal motto has pretty much always been to do the thing I’m most afraid of, within reason of course. Following this guideline has opened me up to a world of opportunities and personal growth. So, I decided for this blog post I’d take the same approach and dive into an area that I’m not very comfortable with. For me this area of discomfort is the intersection between large diverse communities and evolution. 

Trophic interactions define our understanding of ecosystem resource cycling and diversity. Understanding the spatial and evolutionary scales at which trophic ecology influences biodiversity of central import to understanding long term macro-evolutionary dynamics.  A 2019 paper, “Reef fish functional traits evolve fastest at trophic extremes”, dives into the impact trophic position exerts on trait evolution in coral reef environments. Coral reefs sit on the upper limit of ecosystems teeming with  biodiversity. That said, they are an excellent setting for trophic studies, such as this.   

Researchers examined three hypotheses regarding the drivers of evolution: the height constraint hypothesis (HCH), the niche variation hypothesis (NVH), and the trophic extremes hypothesis (TEH). Under the HCH, high trophic levels would evolve more slowly than lower trophic levels because of the constraints imposed by high trophic levels feeding on evasive lower tere prey. Alternatively, NVH suggests the existence of a positive relationship between niche breadth and phenotypic variation. If NVH were the true evolutionary driver we would see intermediate trophic levels experiencing the highest rates of trait evolution. TEH, on the other hand, that organisms on the extreme ends of the trophic level, either highly or lowly situated, would experience the highest rates of trait evolution because these groups would have the most difficulty acquiring resources, creating a strong motivator for trait evolution. 

To actually put these hypotheses to the test, the team used previously published trophic level data to create a phylogenetic reconstruction of over 1,500 coral reef species. To measure the rate of trait evolution, researchers used an R package to map the multivariate rate of morphological evolution across trophic levels. Ultimately, this yielded a number of interesting results. Primarily, they observed that top-level predators experienced the fastest rates of most morphological evolution. This automatically rules out the HCH. They also observed that mid-level predators had the slowest rates of morphological evolution, scoring points for the TEH. Herbivores had the quickest rates of ME, while omnivores had the slowest, suggesting against the NVH. 

Given these findings, the TEH best supported the patterns seen, meaning that organisms at trophic extremes, those having the most difficultly with resource acquisition, experienced the highest levels of morphological trait evolution. I feel after reading this article that, like me, species that face the greatest challenges also experience the most growth. 


Citations: 

Borstein, Samuel R.; Fordyce, James A.; O'Meara, Brian C. (2019). Reef fish functional traits evolve fastest at trophic extremes. NATURE ECOLOGY & EVOLUTION 3, 2. 

Comments

Popular posts from this blog

The sensitive nature of avian biochemistry and why it is an essential tool in ERAs.

I talk a lot about birds, so I figured why not back up that passion with more science.       Lately, I have been reading on the versatility birds offer in regards to environmental risk assessment. Aside form their sensitive biology, birds provide migratory behaviors, breeding site fidelity, not to mention countless developmental factors like eggshell thickness, incubation periods, parental investment, etc. (Scheuhammer et al., 1987). There are many measurable biological phenomena that birds display, and they each are sensitive, to a degree, and subject to alteration due to heavy metals, PCBs, and other pollutants (Zhang et al., 2011).      Something that I personally wanted to explore was the ability to test materials in bird feathers, showing what has possibly entered the trophic chain via ingestion of other species or incidental ingestion. This non destructive method of sampling could allow for more rigorous and larger sampling without ecological det...

Evolution of Phenotypic Plasticity and Its Reversibility

    The driving forces behind the evolution of plasticity have been studied, but the ways in which plasticity evolves and is maintained are still unclear. A relatively recent paper in 2020 by Warren Burggren entitled  Phenotypic Switching Resulting From Developmental Plasticity: Fixed or Reversible? had me wondering about the reversibility of phenotypes resulting form plasticity during development. The paper follows a similar approach of a previous review by Beaman et al. (2016). Both papers, along with others, argue for a change in viewpoint about plasticity and the trade-offs associated with it, something that has peaked my interest.      Burggren (2020) starts out by introducing a new framework for understand plasticity, mainly a push to move away from the classical G x E model for plasticity to include more terms that contribute to plastic traits. The new model, G x (E + Epi) x (D x S) incorporates epigenetics (Epi; a mediator between genes an...

I got 99 problems but a bee ain't one: how does host condition affect parasite development?

Over the course of the past few weeks I've been fascinated by extreme life cycles and had planned on writing about the development of organisms that possessed some of those life cycles. I stumbled upon a few examples of parasites that had complex multi-host lifecycles which perked my interest and also was something we hadn't dwelled on in class. We've touched briefly on in utero development which I suppose is somewhat like a parasite developing in a host, but parasite development hasn't been covered. Furthermore, is parasite development subject to similar environmental stressors as the ones we've discussed?  In a paper (cited below) by Logan A. et al., the authors want to know if pollen starvation (low food abundance) in hosts can alter parasite abundance in hosts.  The researchers did an experiment involving  Crithidia bombi (gut parasite) in bumble bees. In this experiment, the researchers were curious about how pollen starvation effects parasite abundance in host...