Skip to main content

     In class we most recently discussed how phenotypes may be lost or gained over time, the potential role of genetic accommodation in shaping genotypes, and how plasticity may be another driver in natural selection through adaptation. I looked into this a little further and found two different theories of adaptive evolution pertaining to phenotypic plasticity. These were described as "gene leading" and "gene following" approaches by Ghalambor and colleagues. Gene leading is the typical thought of evolution as the process of change in allele frequencies over time, which would shape traits that are plastic and environmentally induced variation is not heritable and actually slows the rate of adaptive evolution. Gene following is the idea that environmentally induced and weak genetic control of phenotypic variation becomes established in a population and results in genetic assimilation of a trait so that the need for environmental cues are not required. 

    The later approach argues that environmentally induced phenotypic plasticity can result in genetic changes over time. This got me wondering about an interesting variation in reproduction strategies of mole salamanders (Ambystoma talpoideum) where Atlantic coastal plain populations lay their eggs singly under vegetation in a pond while Gulf coast populations lay them in small masses around twigs. Dean Croshaw found that  A. talpoideum eggs had higher rates of mortality when touching other conspecific eggs. Furthermore, mortality of eggs increased if neighboring eggs were dead vs. neighboring eggs being alive. This is likely a result of water molds transferring from one egg to another.  I bring this example up because I wonder if this difference in reproductive strategy may be a result of traits that were once plastic across the species' range and has now become conserved along with genetic distinctions between the Atlantic and Gulf coast populations. 


GHALAMBOR, C.K., McKAY, J.K., CARROLL, S.P. and REZNICK, D.N. (2007), Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21: 394-407

Singly laid mole salamander (Ambystoma talpoideum) eggs resist mortality from water mold infection Author(s): Dean A. Croshaw Source: Behaviour , 2014, Vol. 151, No. 1 (2014), pp. 125-136

Comments

Popular posts from this blog

The Environmental Trade-offs of Increased Antidepressant Use

       I came across an interesting sentiment the other day. In response to the generational expression  “kids have it so easy nowadays” someone replied “that’s the point”. The point of progressing is to make life easier for the next generation. While today’s kids don’t have to walk uphill both ways to get to school, they face their own unique obstacles with the constant pressures from social media and threat of school shootings. The 2021 State Of Mental Health In America survey reports that youth depression is worsening. Statistics show that this disproportionately affects youths who identify as more than one race. However, some statistical growth can be attributed to an increase in diagnoses as the stigma of mental health has changed and more people seek treatment. Along with better access to therapy, access to a variety of antidepressants has increased as well. The CDC reports that from 1999 to 2014 antidepressant use has increased by almost 65% with one in...

A Wasp, a Caterpillar, and a Changing Climate

       Host-parasitoid interactions conjure up rather graphic images of a hoard of small wasps boring through the soft tissue of an unassuming caterpillar. That poor caterpillar. Since I first became aware of this gory dynamic relationship, I always sided with the caterpillar. However, my new-found enthrallment with beneficial insect performing biological control has fostered a new perspective.  The host-parasitoid relationship between the caterpillar and wasp maintains ecological balance. Now, we see climate change can completely throw this delicate system out of whack.      In a recent 2021 paper, Moore et al explore the impacts of fluctuating high temperatures on the development of both the lepidopteran larval host Manduca sexta and the parasitoid wasp Cotesia congregata . A previous study with this same host-parasitoid system had found that parasitoids had reduce survival while hosts underwent accelerated growth under constant elevated temper...

A discussion of compensatory growth and how it could play a role in captive rearing strategies

One aspect of plasticity that interests me is the idea of compensatory growth (CG). CG is when limitation in resources restricts something like a tadpole from growing at an early stage, but then later, a release in that restriction results in an accelerated growth rate above the average in a population. Observationally, this may just look like less fit tadpoles. Bigger is always better, right?   Maybe not. Consider an extreme example, where a large spider has caught two types of prey on its web, a fruit fly, and a housefly. Now suppose the spider can only pick one prey (perhaps they're only loosely caught on the web and there's a short window of opportunity). Which will the large spider most likely go for? It will probably choose the larger housefly.  Similarly, think of two tadpoles. This time they're the same species, but one is larger than the other. A giant ambushing Anax larva also lives in this pond and it's hungry. But it will give away its position when it attac...