Skip to main content

Applying a Reaction Norm Framework to Examining Variability in Egg Size Produced by Honey Bee (Apis mellifera) Queens

    Phenotypic plasticity arises through three primary mechanisms: genetic, environmental and the interaction between the two (Martin et al 2021). Although the Martin et al paper focused on applying the reaction norm framework to exploring immunology, I believe the premise can be extrapolated to other fields of ecological importance. For example, a November 2020 study from Amiri et al examined factors influencing variation in the size of eggs produced by honeybee (Apis mellifera) queens.

    Amiri et al found that certain genetic lineages produced larger eggs on average. However, there was significant variability of egg size produced by queens within the same lineage. This suggests that external factors, outside of genetics, influence egg size plasticity. Amiri et al looked into two environmental conditions that could influence egg size:  colony size and nutritional status. Colony size is a factor of the social environment within the hive. Queens within larger colonies produce smaller eggs size on average than conspecifics in small colonies. Nutritional status of the nest also significantly impacted egg size. Queens in overfed colonies produced significantly smaller eggs on average than queens in pollen-restricted colonies. Overall, genotype and colony size had a greater impact on eggs size than the experimentally manipulated food availability.

      The larger egg size is associated with greater survival of offspring. When presented with unfavorable conditions the queens produced larger eggs to ensure survival of offspring.  The ability of a queen to modulate egg size depending on environmental conditions might demonstrate a conserved life history strategy from a presocial ancestral line. Modern honeybees form complex hives where nurse worker bees provide brood care for offspring. Larger colonies have more workers available for brood care, therefore the queen does not need to invest in producing larger eggs. Survival in a larger colony will already surpass that of a small colony because of the surplus of nurse bees caring for brood.

    The reaction norm framework could further be applied to premise of the honeybee study to elucidate the degree at which a queen’s genotype produces certain egg sizes across a gradient of environmental factors. Amiri et al covered genetic and environmental factors that affect egg size as distinct mechanisms. However, they did not explicitly explore the interface of genetic and environmental factors. Despite not recognizing the interface of how genotype and environment give rise to plasticity, the researchers applied a reaction norm framework. They compared queens from the same genetic lineage in their environmental studies. In their examination of the effect of colony size, they found that sister queens similarly produced smaller eggs when in larger colonies. In smaller colonies, the sister queens also both produced larger eggs. Unfortunately, their interface studies only explored a binary of environmental factors (overfed vs. pollen restricted and large vs small colony size). Nonetheless, this research leaves room for future studies to examine the gradient of environmental factors that can affect egg size and consequently survivability. These metrics may be important tools for conservation and management of honeybee and other social bee populations.


Sources:

Amiri, E., Le, K., Melendez, C. V., Strand, M. K., Tarpy, D. R., & Rueppell, O. (2020). Egg‐size plasticity in Apis mellifera: honey bee queens alter egg size in response to both genetic and environmental factors. Journal of evolutionary biology33(4), 534-543.


Martin, L. B., Hanson, H. E., Hauber, M. E., & Ghalambor, C. K. (2021). Genes, Environments, and Phenotypic Plasticity in Immunology. Trends in immunology.



 




Comments

Popular posts from this blog

Are ecotoxicologists going to the dogs? No...but they should.

A few months ago I read an article about the Miami Heat basketball organization using Covid sniffing dogs to admit fans into the arena and was blown away. They can't actually detect the virus, but they can pick up the chemical differences in the composition of breaths exhaled between healthy and infected individuals (Dorman 2021). I've always heard about dogs being used to detect drugs and track fugitives, but the ability to detect a virus by sniffing a person's breath is just on a whole other level. I started thinking about possible applications and the idea of using dogs to detect pollutants in the environment came across my mind.  While researching the capabilities of these sniffing dogs, I searched for any examples or projects that involved using sniffing dogs as pollutant detectors and I came across an EPA proof of concept from 2003. The idea was to train sniffing dogs to be able to detect various environmental contaminants that range from house molds to illegal pestic

The Dark Side of Subsidies: PCB Transport in Riparian Food Webs

           A common theme in this course has been the discussion of different contaminants and how they enter and persist in natural systems. Identifying the levels at which these contaminants are entering the food web and their method of transport are crucial to assessing their risk. As we discussed this topic in class I was reminded of a paper I read during my Freshwater Ecosystems course and am very glad I went back and re-read it. Published in Ecological Applications, the authors Walters et. al demonstrated how PCB's are transported from aquatic systems into terrestrial food webs through the capture and consumption of aquatic insects by Spiders  and Herps. I thought this particularly appropriate for our classes interests.      One of the largest challenges in a study like this is to determine where the selected predators are obtaining most of their food from. To do this, the authors used a stable isotope analysis to identify the Carbon-13 and Nitrogen-15 ratios in both aquatic

Change is good...just ask a baby turtle

  Change is good, or so the old adage goes. But is that really true, or is it something said to create a silver lining when the world seems to be shifting at an uncomfortable pace. Not all change is good (just ask the climate), but for some creatures, a little variance can go a long way. Take, for example, the common snapping turtle ( Chelydra serpentina ). A recent study by Leivesley and Rollinson (2021) found that mimicking natural temperature fluctuations in incubating eggs had a beneficial effect in early-age immune response. The authors were interested in using immune response as a marker of fitness under the Charnov-Bull model. Their experimental design included four groups: a male promoting temperature (MPT; 24⁰ C) and a female promoting temperature (FPT; 28⁰ C), each split into constant and fluctuating temperature regimes. Half of the eggs in each group were treated with an aromatase inhibitor, which effectively prevents female development even at the FPT. The idea is that if i